May-Jun 2003 Synthesis of Heteroaryl Substituted α-Mercapto Acids from Thiomalic Acid Using Hexafluoroacetone as Protecting and Activating Reagent

Ksenia Pumpor, Elisabeth Windeisen and Klaus Burger*

Department of Organic Chemistry, University of Leipzig, Johannisalle 29, D-04103 Leipzig, Germany Received January 10, 2003

The synthesis of heterocyclic α -mercapto acids starting from (*RS*)-thiomalic acid using hexafluoroacetone as protecting and activating agent is described. The new compounds are useful building blocks for peptide and depsipeptide modification as well as for drug design.

J. Heterocyclic Chem., 40, 435 (2003).

Introduction.

 α -Hydroxy acids, besides α -amino acids and carbohydrates, belong to the most important and abundant representatives of low molecular compounds of the naturally occurring chiral pool [1]. In contrary, mercapto carboxylic acids are rare. They were found as constituents of natural products, for example in biologically active natural peptides [2]. However, mercapto acids as well as acylmercapto acids are interesting building blocks for medicinal chemistry. A β -mercapto acid is a subunit of *Captopril*, a classical drug for treating hypertension [3], an α -mercapto acid subunit is present in Omapatrilat and Gemopatrilat. Both are vasopeptidase inhibitors that are currently under clinical evaluation [4]. They all belong to a class of oligomers called peptide hybrides. Compounds containing the mercapto or the mercaptoacyl [5] moiety often exhibit strong inhibitory effects on metal-containing enzymes (metallozymes) [6], similar to hydroxamic acids [7]. Some of the zinc-containing angiotensine converting enzymes (ACE) possess the α -mercaptoacyl substructure [8].

A growing number of reports focus on peptidomimetic compounds built from two or more different types of monomers [9]. Consequently, the development of new methodology for the synthesis of new types of amino [10], hydroxy [11], keto [12] and mercapto acids [13-15] and their incorporation into peptide and depsipeptide hybrides is an area of current interest [9].

Heterocyclic compounds, especially thiazole derivatives, exhibit a broad range of biological activities. The thiazole substructure is present in numerous natural products, drugs, and pesticides [16]. Some of the natural occurring thiazole derivatives exhibiting antibiotic activity are amino acids. As the first representative of this class of compounds 3-amino-3-(thiazol-2-yl)propanoic acid was isolated from the antibiotic bottromycin (*Streptomyces bottropensis*) [17]. Naturally occurring thiazole-substituted hydroxy acids, like 4-amino-4-(4-carboxythiazol-2yl)-2-hydroxybutanoic acid, isolated from the macrocycle nosiheptide, are rare [18]. Thiazole-substituted mercapto acids are unknown to the best of our knowledge.

Subsequently, we report on a preparatively simple route to this class of compounds starting from (RS) thiomalic acid.

Results and Discussion.

We found that a recently described protection/activation concept for the regioselective derivatization of multifunctional α -amino [19] and α -hydroxy acids [20] can also be applied to α -mercapto acids. Hexafluoroacetone reacts readily with α -mercapto acids in DMSO at room temperature to give 2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-ones in 80 - 90% yield [21]. In one step, protection of the α -mercapto and the adjacent carboxy group is achieved. Concomitantly, the α -carboxy group is activated towards nucleophiles and can be regioselectively derivatized. A variety of functional groups present in the side-chain are tolerated by the above protection/activation procedure and therefore, can be derivatized regioselectively. On exclusion of moisture 2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-ones can be stored in a refrigerator over months without any decomposition.

In this context, compound **2** a derivative of thiomalic acid is a synthetically useful intermediate, because the carboxylic group of the side chain can be regioselectively functionalized after separate activation. Another advantage, protection and α -activation and on the other hand α derivatization and deblocking of the mercapto function occur in one step. Therefore, the hexafluoroacetone concept saves steps compared to conventional strategies.

On heating 2 with an excess of thionyl chloride, the corresponding acid chloride is formed in excellent yields.

With an excess of diazomethane (> 2 equivalents) 3 is converted into diazoketone 4, which is a preparatively versatile building block [22]. For example, when 4 is treated with conc. HBr or conc. HCl at - 78 °C within minutes the corresponding haloketones 5 are formed in up to 90% yield, which can be subjected to the Hantzsch reaction without further purification [23, 24]. Dry acetone proved to be the best solvent for the reaction of 5 with thioamides, selenamides and thioureas. When a reaction mixture of 5 and the corresponding thioamide is heated up to 50 °C, within minutes the HX-salts 6 start to crystallize. On stirring in a two-phase system (aqueous NaHCO₃ solution/diethyl ether) the salts $\mathbf{6}$ were converted into the thiazoles $(6 \rightarrow 7)$. After separation of the organic phase and drying with MgSO₄, products 7 obtained after evaporation of the solvent in vacuo are already analytically pure. The structure of the new compounds was proved by ir and

¹³C chemical shifts (ppm) of 7a

nmr spectroscopy. An ir absorption in the region of 1815 - 1800 cm⁻¹ unequivocally reveals the presence of a lactone moiety, whereas the ¹³C nmr spectra show resonance signals of an unchanged 1,3-oxathiolan-5-one and a newly formed thiazole ring system.

Deprotection of compounds 7 to give the α -mercapto acids 8 can be achieved by heating up to 50 °C in a THF/water mixture. In Scheme 4, some synthetically useful reactions are summarized: Esters 9 are obtained on heating in the presence of an excess of the corresponding alcohols. Reaction of 7 with amines, hydrazine and hydroxyl amine at room temperature provides ready access to a variety of α -mercapto acid derivatives 10 - 14.

Because of their broad spectrum of biological activities, the development of synthetic routes to new types of hydroxamic acid derivatives is of current interest [25,26]. Compounds **11** represent a new ligand system to form metal chelates, having two interesting coordination sites, namely a mercapto and an *N*-hydroxyamide moiety. Reaction of **7** with *C*-terminal protected amino acids or Nprotected amino acid hydrazides offers a preparatively simple access to new types of peptide hybrides (**15 - 17**) [27]. The option to derivatize the deblocked HS-group subsequently, increases the synthetic potential of this reaction sequence considerably.

Aminolytic ring opening reactions of the lactones 7 occur efficiently when the resulting products are poorly soluble in

the solvent used and therefore spontaneously crystallize from the reaction mixture. In most cases the compounds obtained are already analytically pure. The progress of the reactions can be monitored by ¹⁹F NMR spectroscopy.

The above described synthetic sequence is well suited for the generation of libraries of peptide and depsipeptide surrogates with new sequence motifs, which could be of interest to pharmaceutical industry. Oxidation on air of the mercapto group of compounds 8 - 17 is a slow process. Nevertheless, the experiments should be performed under inert gas. On further applications of α -mercapto acids for drug synthesis, including glycosylation and disulfide formation, we report elsewhere.

EXPERIMENTAL

General.

Solvents were purified prior to use. Reagents were used as purchased. Melting points were determined on a Boetius heating table. For C,H,N analyses a CHNO-Rapid-Elemental-Analyser (Heraeus) was used. Mass spectra were recorded on a VG 12-250 (Masslab) electron ionization spectrometer (EI = 70 eV). Ir spectra were obtained using a Specord spectrometer (Carl-Zeiss, Jena) and Genesis Series FTIR ATI Mattson spectrometer. Nmr spectra were recorded on Varian GEMINI 200 (¹H 199.96; ¹³C 50.29 MHz), GEMINI 2000 (¹H 200.04; ¹³C 50.31 MHz) and GEMINI 300 (¹H 300.08: ¹³C 75.46 MHz) instruments. Chemical shifts are reported in ppm relative to tetramethylsilane. For ¹⁹F nmr spectra, external trifluoroacetic acid is used as reference. Thin-layer chromatography was performed on Merck (Darmstadt, Germany) Kieselgel $60F_{254}$ precoated plates. Reactions were carried out under dry argon.

[2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxathiolan-4-yl]acetic acid (2).

In a closed system, equipped with a dry ice condenser and sealed with a bubbler, a suspension of racemic thiomalic acid (15.0 g, 100 mmol) in 50 ml of DMSO was treated with an excess (> 2 equivalents) of hexafluoroacetone. After the reaction was complete, the reaction mixture was poured into 300 ml of an ice/water mixture and extracted with 200 ml CH₂Cl₂. The aqueous phase was extracted with 100 ml of CH₂Cl₂ (3x). The combined organic phase was washed (3x) with 100 ml portions of an ice/water mixture, dried with MgSO₄ and evaporated to dryness *in vacuo*. The solid residue was recrystallized from benzene/pentane. Yield: 25.6 g (86%) **2**, mp 84 °C, white crystals; ir

(KBr): v 3300-2700, 1830, 1720 cm⁻¹; ¹H nmr (CDCl₃): δ 3.02 (dd, 1H, J = 18.0 Hz, J = 10.0 Hz), 3.36 (dd, 1H, J = 18.0 Hz, J = 4.0 Hz), 4.51 (dd, 1H, J = 10.0 Hz, J = 4.0 Hz, 1H), 10.63 ppm (s. br., 1H); ¹³C nmr (CDCl₃): δ 37.9, 41.6, 83.5 (sept., J = 35 Hz), 120.8 (q, J = 284 Hz), 121.3 (q, J = 284 Hz), 169.8, 175.6 ppm; ¹⁹F nmr (CDCl₃): δ 0.11 (q, J = 9.0 Hz, 3F), 1.28 ppm (q, J = 9.0 Hz, 3F); ms (EI) m/z = 298 [M]⁺, 280 [M - H₂O]⁺, 252 [280 - CO]⁺, 69 [CF₃]⁺.

Anal. Calcd. for $C_7H_4F_6O_4S$ (298.17): C, 28.19; H, 1.35. Found: C, 28.09; H, 1.42.

[2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxathiolan-4-yl]acetyl chloride (**3**).

Compound **2** (25.0 g, 83.8 mmol) was heated with 20 ml freshly distilled thionyl chloride under reflux for 6 h. After removal of the excess of thionyl chloride, the remaining liquid was distilled *in vacuo*. Yield: 24.4 g (88%) **3**, bp 80 °C/6 torr, slightly yellow liquid; mp ca. 15 °C; ir (film): v 1800 br., 1385 cm⁻¹; ¹H nmr (CDCl₃): δ 3.47 (dd, 1H, J = 19.0 Hz, J = 10.0 Hz), 3.86 (dd, 1H, J = 19.0 Hz, J = 4.0 Hz), 4.55 ppm (dd, 1H, J = 10.0 Hz), 120.9 (q, J = 284 Hz), 121.4 (q, J = 285 Hz), 169.1, 171.5 ppm; ¹⁹F nmr (CDCl₃): δ 1.60 (q, J = 9.0 Hz, 3F), 2.40 ppm (q, J = 9.0 Hz, 3F); ms (EI) m/z = 316/318 [M]⁺, 281 [M - Cl]⁺, 252 [M - CO, - HCl]⁺, 182 [CF₃CSCF₃]⁺, 113 [CF₃CS]⁺, 87 [281 - CO, - CF₃COCF₃]⁺, 69 [CF₃]⁺.

Anal. Calcd. for C₇H₃ClF₆O₃S (316.60): C, 26.55; H, 0.95. Found: C, 26.74; H, 1.09.

4-(3-Diazo-2-oxopropyl)-2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-one (4).

To a stirred solution of diazomethane (100 mmol) in 200 ml of diethyl ether, **3** (11.78 g, 37.2 mmol) in 50 ml of diethyl ether was slowly added with cooling (0 °C). After 30 minutes the solvent was evaporated and the residue was distilled under reduced pressure. Yield: 11.15 g (93%) **4**, bp 86 °C/0.1 torr, mp 30 °C, yellow crystals; ir (CHCl₃): v 2095, 1805, 1635 cm⁻¹; ¹H nmr (DCCl₃): δ 2.90 (dd, 1H, J = 17.0 Hz, J = 11.0 Hz), 3.38 (dd, 1H, J = 17.0 Hz, J = 3.0 Hz), 4.51 (dd, 1H, J = 11.0 Hz, J = 3.0 Hz), 5.44 ppm (s, 1H); ¹³C nmr (CDCl₃): δ 41.3, 43.8, 55.8, 83.8 (sept, J = 34 Hz), 121.0 (q, J = 284 Hz), 121.4 (q, J = 286 Hz), 170.9, 188.9 ppm; ¹⁹F nmr (CDCl₃): δ 1.60 (q, J = 9.0 Hz, 3F); 2.34 ppm (q, J = 9.0 Hz, 3F); ms (EI) m/z = 322 [M]⁺, 294 [M - N₂]⁺, 252 [M - CO, - CH₂N₂]⁺, 225 [294 - CF₃], 113 [CF₃CS]⁺, 69 [CF₃]⁺, 55 [CH₂COCH]⁺.

Anal. Calcd. for C₈H₄F₆N₂O₃S (322.18): C, 29.82; H, 1.25; N, 8.69. Found: C, 30.46; H, 1.53; N, 7.60.

4-(3-Bromo-2-oxopropyl)-2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-one (**5a**).

To a stirred solution of freshly prepared diazoketone **4** (10.0 g, 31 mmol) in THF (70 ml) at - 78 °C, conc. HBr (25 ml) was added dropwise. After gas formation ceased, the mixture was warmed up to 0 °C and the solvents and the excess of HBr were distilled off *in vacuo*. The residue was dissolved in 100 ml of CHCl₃, washed with cold NaHCO₃ solution, and dried with MgSO₄. The solvent was evaporated *in vacuo* and the remaining liquid was purified by distillation under reduced pressure. Slightly yellow oil, crystallizing on storage in a refrigerator. Yield: 9.55 g (82%) **5a**, bp 86 °C/0.2 torr, mp 40 °C; ir (KBr): v 1815, 1735 cm⁻¹; ¹H nmr (acetone-d₆): δ 3.45 (dd, 1H, J = 19.0

Hz, J = 10.0 Hz), 3.92 (dd, 1H, J = 19.0 Hz, J = 3.0 Hz), 4.38 (d, 2H, J = 2.0 Hz), 4.87 ppm (dd, 1H, J = 10.0 Hz, J = 3.0 Hz); 13 C nmr (acetone-d₆): δ 34.8, 41.6, 44.0, 84.0 (sept., J = 34 Hz), 122.1 (q, J = 284 Hz), 122.5 (q, J = 284 Hz), 171.2, 199.2 ppm; 19 F nmr (acetone-d₆): δ 0.24 (q, J = 10.0 Hz, 3F), 1.14 ppm (q, J = 10.0 Hz, 3F); ms (EI) m/z = 376 [M]⁺, 295 [M - Br]⁺, 281 [M - CH₂Br]⁺, 253[M - COCH₂Br]⁺, 87 [253 - CF₃COCF₃]⁺.

Anal. Calcd. for $C_6H_5BrF_6O_3S$ (375.08): C, 25.61; H, 1.34. Found: C, 25.89; H, 1.41.

4-(3-Chloro-2-oxopropyl)-2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-one (**5b**).

To a stirred solution of freshly prepared diazoketone 4 (3.22 g, 10.0 mmol) in 25 ml of THF at - 78 °C, conc. HCl (7 ml) was added dropwise. After gas formation ceased, the mixture was warmed up to 0 °C and the solvents and the excess of HCl were evaporated in vacuo. For working-up procedure see 5a. After evaporation of the solvent the residue was recrystallized from pentane/CHCl₃. Yield: 2.68 g (81%) 5b, mp 51 °C, white crystals; ir (KBr): v 1806, 1755 cm⁻¹; ¹H nmr (CDCl₃): δ 3.22 (dd, 1H, J = 19.0 Hz, J = 11.0 Hz), 3.75 (d, 1H, J = 19.0 Hz, J = 3.0Hz), 4.21 (s, 2H), 4.49 ppm (dd, 1H, J = 11.0 Hz, J = 3.0 Hz); ¹³C nmr (CDCl₃): δ 40.8, 44.3, 47.4, 83.9 (sept., J = 35 Hz), 121.0 (q, J = 284 Hz), 121.5 (q, J = 285 Hz), 170.8, 199.4 ppm; ¹⁹F nmr $(CDCl_3)$: δ 1.65 (q, J = 9.0 Hz, 3F), 2.34 ppm (q, J = 9.0 Hz, 3F); ms (EI) m/z = 332/330 [M]⁺, 294 [M - HCl]⁺, 281 [M - CH₂Cl]⁺, 253 [M - COCH₂Cl]⁺, 87 [253 - CF₃COCF₃]⁺, 79/77 [COCH₂Cl]+.

Anal. Calcd. for $C_8H_5ClF_6O_3S$ (330.63): C, 29.06; H, 1.52. Found: C, 29.10; H, 1.08.

4-(Thiazol-4-ylmethyl)-2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-one (7).

General Procedure.

To a stirred solution of **5a** (10 mmol) in 10 ml of acetone, the corresponding thioamide (10 mmol), dissolved in 10 ml of acetone, was added dropwise. Then the reaction mixture was heated under reflux for 4 hours. The solvent was removed *in vacuo*, and the residue was suspended in diethyl ether (100 ml) and washed with ice-cold NaHCO₃ solution. The aqueous phase was extracted with diethyl ether (3x 50 ml). The combined organic layer was washed with ice-cold water (3x 50 ml) and dried with MgSO₄. After evaporation of the solvent under reduced pressure the residue was recrystallized from hexane/CHCl₃.

4-[2-(2-Thienyl)-thiazol-4-ylmethyl]-2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-one (**7a**).

Compound **5a** (3.75 g, 10 mmol) was reacted with thiophene thioamide (1.43 g, 10 mmol) in 20 ml of acetone. Yield: 3.73 g (89%) **7a**, mp 65 °C, white crystals; ir (CHCl₃): v 1815 cm⁻¹; ¹H nmr (CDCl₃): δ 3.26 (dd, 1H, J = 14.9 Hz, J = 11.1 Hz), 3.77 (dd, 1H, J = 15.0 Hz, J = 3.6 Hz), 4.76 (dd, 1H, J = 10.8 Hz, J = 3.9 Hz), 7.05 (s, 1H), 7.13 (m, 1H), 7.46 (m, 1H), 7.56 ppm (m, 1H); ¹³C nmr (CDCl₃): δ 35.3, 46.1, 83.3 (sept., J = 35 Hz), 114.9, 120.9 (q, J = 283 Hz), 121.5 (q, J = 284 Hz), 127.0, 128.0, 128.2, 136.8, 151.1, 162.5, 170.5 ppm; ¹⁹F nmr (CDCl₃): δ 0.86 (q, J = 9.0 Hz, 3F), 1.86 ppm (q, J = 9.0 Hz, 3F); ms (EI): *m/z* = 419 [M]⁺, 253 [M - CF₃COCF₃]⁺, 225 [253 - CO]⁺, 180 [225 - CSH]⁺, 71 [C₃H₃O₂]⁺, 45 [CSH]⁺.

Anal. Calcd. for C₁₃H₇F₆NO₂S₃ (419.39): C, 37.23; H, 1.68; N, 3.34. Found: C, 37.22; H, 1.77; N, 3.39.

May-Jun 2003

4-[2-(4-Fluorophenyl)-thiazol-4-ylmethyl]-2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-one (**7b**).

Compound **5a** (3.75 g, 10 mmol) was reacted with 4-fluorothiobenzamide (1.55 g, 10 mmol) in 20 ml of acetone. Yield: 3.03 g (69%) **7b**, mp 75 °C, white crystals; ir (KBr): v 3400, 1810 cm⁻¹; ¹H nmr (CDCl₃): δ 3.32 (dd, 1H, J = 15.0 Hz, J = 10.8 Hz), 3.79 (dd, 1H, J = 15.3 Hz, J = 3.6 Hz), 4.76 (dd, 1H, J = 10.5 Hz, J = 3.6 Hz), 7.11 (s, 1H), 7.19 (m, 2H), 7.96 ppm (m, 2H); ¹³C nmr (CDCl₃): δ 33.5, 45.4, 82.1 (sept., J = 34 Hz), 116.4 (d, J = 22 Hz), 117.6 (d, J = 8.0 Hz), 120.8 (q, J = 284 Hz), 121.4 (q, J = 285 Hz), 128.3, 129.4 (d, J = 3.0 Hz), 151.3, 163.3 (d, J = 248 Hz), 166.0, 170.7 ppm; ¹⁹F nmr (CDCl₃): δ 0.85 (q, J = 9.3 Hz, CF₃), 1.91 ppm (q, J = 9.0 Hz, CF₃); ms (EI) m/z = 431 [M]⁺, 412 [M -F]⁺, 265 [M - CF₃COCF₃]⁺, 237 [265 - CO]⁺, 192 [265 -COCHS]⁺, 122 [FC₆H₄CNH]⁺.

Anal. Calcd. for C₁₅H₈F₇NO₂S₂ (431.34): C, 41.77; H, 1.87; N, 3.35. Found: C, 41.30, H, 2.02; N, 3.35.

4-[2-(4-Chlorophenyl)-thiazol-4-ylmethyl]-2,2-bis(trifluo-romethyl)-1,3-oxathiolan-5-one (**7c**).

Compound **5a** (3.75 g, 10 mmol) was reacted with 4-chlorothiobenzamide (1.72 g, 10 mmol) in 20 ml of acetone. Yield: 2.50 g (56%) **7c**, mp 84 °C, white crystals; ir (KBr): v 1810 cm⁻¹; ¹H nmr (acetone-d₆): δ 3.44 (dd, 1H, J = 15.0 Hz, J = 10.0 Hz), 3.81 (dd, 1H, J = 15.0 Hz, J = 4.0 Hz), 5.15 (dd, 1H, J = 10.0 Hz, J = 4.0 Hz), 7.52 (s, 1H), 7.53 (m, 2H), 7.97 ppm (m, 2H); ¹³C nmr (acetone-d₆): δ 35.2, 46.6, 83.6 (sept., J = 35 Hz), 117.8, 122.0 (q, J = 283 Hz), 122.7 (q, J = 284 Hz), 128.6, 130.1, 132.9, 136.6, 152.9, 167.5, 181.0 ppm; ¹⁹F nmr (acetone-d₆): δ 0.25 (q, J = 9.0 Hz, CF₃), 1.41 ppm (q, J = 9.0 Hz, CF₃); ms (EI) m/z = 447/449 [M]⁺, 281/283 [M - CF₃COCF₃]⁺, 253/255 [M - CF₃COCF₃, -CO]⁺, 208 [M - CF₃COCF₃, - COCHS]⁺, 71 [C₃H₃O₂]⁺.

Anal. Calcd. for C₁₅H₈ClF₆NO₂S₂ (447.81): C, 40.23; H, 1.80; N, 3.13. Found: C, 40.39; H, 1.86; N, 3.10.

4-[2-(4-Methylphenyl)-thiazol-4-ylmethyl]-2,2-bis(trifluo-romethyl)-1,3- oxathiolan-5-one (**7d**).

Compound **5a** 3.75 g (10 mmol) was reacted with 4-methylthiobenzamide (1.51 g, 10 mmol) in 20 ml of acetone. Yield: 2.70 g (63%) **7d**, mp 79 °C, white crystals; ir (KBr): v 1810, 1790, 1510, 1455, 1210 cm⁻¹; ¹H nmr (CDCl₃): δ 2.39 (s, 3H), 3.25 (dd, 1H, J = 14.8 Hz, J = 10.6 Hz), 3.75 (dd, 1H, J = 15.0 Hz, J = 3.4 Hz), 4.72 (dd, 1H, J = 10.8 Hz, J = 3.2 Hz), 7.03 (s, 1H), 7.24 (d, 2H, J = 8 Hz), 7.81 ppm (d, 2H, J = 8 Hz); ¹³C nmr (CDCl₃): δ 21.4, 35.5, 46.2, 83.4 (sept., J = 35 Hz), 115.0, 120.9 (q, J = 286 Hz), 121.6 (q, J = 286 Hz), 126.5, 129.7, 130.6, 140.8, 151.3, 169.1, 170.5 ppm; ¹⁹F nmr (CDCl₃): δ 1.94 (q, J = 9.0 Hz, CF₃), 3.09 ppm (q, J = 9.0 Hz, CF₃); ms (EI) m/z = 427 [M]⁺, 408 [M - F]⁺, 233 [M - (CF₃)₂CO, - CO]⁺, 188 [M - C₇H₇, - C₄H₃NS]⁺, 118 [C₇H₇CNH]⁺. *Anal.* Calcd. for C₁₆H₁₁F₆NO₂S₂ (427.37): C, 44.96; H, 2.59;

N, 3.27. Found: C, 45.10; H, 2.78; N, 3.75.

3-[2-(Aryl)-thiazol-4-yl]-(RS)-2-mercapto-propanoic Acid (8).

General Procedure.

A solution of **7** (5 mmol) in a 1:1-THF/water mixture (50 ml) was heated under reflux for 2 days. After evaporation of the solvents, the residue was dissolved in 100 ml of CH_2Cl_2 . The organic layer was washed with water (3x 50 ml) and dried with MgSO₄. After evaporation of the solvent *in vacuo* the residue was recrystallized from CHCl₃/hexane.

3-[2-(2-Thienyl)-thiazol-4-yl]-(R,S)-2-mercaptopropanoic Acid (8a).

Compound **7a** (2.10 g, 5 mmol) was heated in a THF/water mixture. Yield: 1.20 g (88%) **8a**, mp 80 °C, white crystals; ir (KBr): v 3580-2930, 1710 cm⁻¹; ¹H nmr (CDCl₃): δ 3.24 (dd, 1H, J = 15 Hz, J = 6.3 Hz), 3.42 (dd, 1H, J = 14.8 Hz, J = 7.5 Hz), 4.04 (dd, 1H, J = 14.0 Hz, J = 7.0 Hz), 6.95 (s, 1H), 6.99 (m, 1H), 7.32 (d, 1H, J = 5.2 Hz), 7.45 (d, 1H, J = 3.6 Hz), 10.40 ppm (s.br., 2H, OH, SH); ¹³C nmr (CDCl₃): δ 32.4, 51.7 (d, J = 61 Hz), 115.7, 127.4, 128.2, 128.3, 136.3, 152.2, 162.4, 175.0 ppm; ms (EI) m/z = 271 [M]⁺, 253 [M - H₂O]⁺, 238 [M - SH]⁺, 226 [M - CO₂H]⁺, 220 [253 - SH]⁺, 193 [226 - SH]⁺, 181 [226 - CSH]⁺, 111 [C₅H₅NS]⁺, 83 [C₄H₃S]⁺, 71 [C₃H₃O₂]⁺, 39 [C₃H₃]⁺.

Anal. Calcd. for C₁₀H₉NO₂S₃ (271.38): C, 44.26; H, 3.34; N, 5.16. Found: C, 44.20; H, 3.16; N, 4.76.

3-[2-(4-Fluorophenyl)-thiazol-4-yl]-(*RS*)-2-mercaptopropanoic Acid (**8b**).

Compound **7b** (2.16 g, 5 mmol) was heated in a THF/water mixture. Yield: 1.16 g (82%) **8b**, mp 127 °C, white crystals; ir (KBr): v 3500-2700, 1700, 1605 cm⁻¹; ¹H nmr (DMSO-d₆): δ 1.01 (d, 1H, J = 5.8 Hz), 3.03 (dd, 1H, J = 15.0 Hz, J = 7.0 Hz), 3.30 (dd, 1H, J = 14.6 Hz, J = 8.0 Hz), 3.79 (m, 1H), 7.30 (m, 2H), 7.40 (s, 1H), 7.93 ppm (m, 2H); ¹³C nmr (acetone-d₆): δ 31.8, 55.0, 116.6 (d, J = 22 Hz), 116.6, 129.1 (d, J = 9.0 Hz), 130.7, 154.3, 163.0, 166.9, 172.5 ppm; ms (EI) m/z = 283 [M]⁺, 250 [M - SH]⁺, 238 [M - CO₂H]⁺, 193 [238 - CSH]⁺, 71 [C₃H₃O₂]⁺, 45 [CSH, CO₂H]⁺.

Anal. Calcd. for C₁₂H₁₀FNO₂S₂ (283.35): C, 50.87; H, 3.56; N, 4.94.Found: C, 50.61; H, 3.79; N, 4.76.

3-[2-(4-Chlorophenyl)-thiazol-4-yl]-(*RS*)-2-mercaptopropanoic Acid (**8c**).

Compound **7c** (2.24 g, 5 mmol) was heated in a THF/water mixture. Yield: 1.00 g (67%) **8c**; mp 137 °C, yellow crystals; ir (KBr): v 3400-2800, 1750-1650 cm⁻¹; ¹H nmr (CDCl₃): δ 3.28 (m, 1H), 3.43 (m, 1H), 4.07 (m, 1H), 7.03 (s, 1H), 7.30 (m, 2H), 7.71 ppm (m, 2H); ¹³C nmr (CDCl₃): δ 32.3, 52.3, 116.4, 127.8, 129.2, 131.3, 136.2, 152.8, 167.4, 174.9 ppm; ms (EI) m/z = 301/299 [M]⁺, 256/254 [M - CO₂H]⁺, 211/209 [254 - CSH]⁺, 71 [C₃H₃O₂]⁺, 45 [CSH, CO₂H]⁺.

Anal. Calcd. for: C₁₂H₁₀ClNO₂S₂ (299.80): C, 48.08; H, 3.36; N, 4.67. Found: C, 48.02, H, 3.46; N, 4.57.

3-[2-(4-Methylphenyl)-thiazol-4-yl]-(*RS*)-mercaptopropanoic Acid (**8d**).

Compound **7d** (2.14 g, 5 mmol) was heated in a THF/water mixture. Yield: 1.13 g (81%) **8d**, mp 137 °C, white crystals; ir (KBr) v 3600-2780, 1705 cm⁻¹; ¹H nmr (acetone-d₆): δ 2.34 (s, 3H), 3.39 (m, 2H), 4.22 (m, 1H), 7.28 (m, 3H), 7.79 ppm (m, 2H); ¹³C nmr (acetone-d₆): δ 21.3, 33.6, 53.0, 115.2, 126.9, 130.3, 131.6, 140.8, 154.1, 168.2, 172.3 ppm; ms (EI) m/z = 279 [M]⁺, 246 [M - SH]⁺, 234 [M - CO₂H]⁺, 188 [M - C₇H₇], 118 [C₇H₇CNH]⁺, 91 [HSCHCO₂H]⁺.

Anal. Calcd. for C₁₃H₁₃NO₂S₂ (279.37): C, 55.89; H, 4.69; N, 5.01. Found: C, 55.94; H, 4.31; N, 5.19.

Methyl 3-[2-(2-thienyl)-thiazol-4-yl]-(*RS*)-2-mercaptopropionate (9).

Compound **7a** (2.10 g, 5 mmol) was heated in dry methanol (25 ml) under reflux for 3 hours. After evaporation of the solvent,

the residue was purified by Kugelrohr distillation *in vacuo*. Yield: 0.75 g (53%) **9**; bp 220 °C/1.5 torr; ir (film): v 3105, 2950, 1730, 1510 cm⁻¹; ¹H nmr (CDCl₃): δ 2.19 (d, 1H, J = 9.0 Hz), 3.16 (dd, 1H, J = 15.0 Hz, J = 7.0 Hz), 3.40 (dd, 1H, J = 15.0 Hz, J = 8.0 Hz), 3.74 (s, 3H), 3.90 (m, 1H), 6.92 (s, 1H), 7.03 (m, 1H), 7.36 (m, 1H), 7.46 ppm (m, 1H); ¹³C nmr (CDCl₃): δ 37.2, 40.1, 52.6, 114.7, 126.5, 127.6, 127.8, 137.2, 153.1, 161.5, 173.2 ppm; ms (EI) m/z = 285 [M]⁺, 254 [M - OCH₃]⁺, 252 [M - SH]⁺, 226 [254 - CO]⁺, 181 [226 - CSH]⁺, 71 [C₃H₃O₂]⁺, 45 [CSH]⁺.

Anal. Calcd. for: C₁₁H₁₁NO₂S₃ (285.41): C, 46.29; H, 3.88; N, 4.91. Found: C, 46.04; H, 3.95; N, 5.05.

Aminolysis of 4-(thiazol-4-ylmethyl)-2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-ones (7).

General Procedure.

A solution of **7** (5 mmol) in 50 ml of diethyl ether or acetonitrile was reacted at room temperature with an excess of the corresponding amine, aniline, hydrazine hydrate, hydroxylamine, (*S*)phenylalanine methyl ester, Z-hydrazide and Z-glycine hydrazide with stirring. After a few minutes the products began to crystallize. After completion of the reaction (¹⁹F NMR analysis) the precipitate was collected by filtration, washed with diethyl ether and dried *in vacuo*.

N-Benzyl 3-[2-(2-thienyl)-thiazol-4yl]-(*RS*)-2-mercapto-propanamide (**10a**).

Compound **7a** (2.10 g, 5 mmol) was treated with benzylamine (1.07 g, 10 mmol) in 50 ml of diethyl ether. Yield: 1.30 g (72%) **10a**, mp 131 °C, white crystals; ir (KBr): v 3290, 2920, 1630 cm⁻¹; ¹H nmr (DMSO-d₆): δ 3.06 (dd; 1H, J = 14.0 Hz, J = 7.0 Hz), 3.32 (dd, 1H, J = 14.0 Hz, J = 8.0 Hz), 3.88 (dd, 1H, J = 8.0 Hz, J = 7.0 Hz), 4.22 (dd; 1H, J = 15.0, J = 6.0 Hz), 4.36 (dd, 1H, J = 15.0 Hz, J = 6.0 Hz), 7.18 (m, 6H), 7.28 (s, 1H), 7.63 (m, 1H), 7.63 (m, 1H), 7.69 (m, 1H), 8.63 ppm (t, 1H, NH, J = 6.0 Hz); ¹³C nmr (DMSO-d₆): δ 37.4, 40.8, 42.3, 115.9, 126.9, 127.1, 127.2, 128.4, 128.5, 128.7, 136.9, 139.3, 154.0, 160.5, 171.7 ppm; ms (EI) m/z = 360 [M]⁺, 327 [M - SH]⁺, 222 [327 - C₇H₇N]⁺, 194 [222 - CO]⁺, 181 [194 - CH]⁺, 106 [C₇H₇N]⁺, 91 [C₇H₇]⁺.

Anal. Calcd. for: C₁₇H₁₆N₂OS₃ (360.54): C, 56.63; H, 4.47; N, 7.77. Found: C, 56.65; H, 4.55; N, 7.99.

N-Benzyl 3-[2-(4-fluorophenyl)-thiazol-4-yl]-(*RS*)-2-mercapto-propanamide (**10b**).

Compound **7b** (2.16 g, 5 mmol) was reacted with benzylamine (1.07 g, 10 mmol) in 50 ml of diethyl ether. Yield: 1.56 g (84 %) **10b**, mp 147 °C, white crystals; ir (KBr): *v* 3540-3360, 3300, 1640, 1540 cm⁻¹; ¹H nmr (DMSO-d₆): δ 3.04 (d, 1H, J = 9.3 Hz), 3.10 (dd, 1H, J = 14.1 Hz, J = 6.3 Hz), 3.35 (dd, 1H, J = 14.1 Hz, J = 8.7 Hz), 3.93 (m, 1H), 4.19 (dd, 1H, J = 15.6 Hz, J = 5.7 Hz), 4.36 (dd, 1H, J = 15.3 Hz, J = 6.3 Hz), 7.09 (m, 2H), 7.20 (m, 3H), 7.36 (m, 3H), 8.01 (m, 2H), 8.61 ppm (t, 1H, J = 5.9 Hz, NH); ¹³C nmr (acetone-d₆): δ 37.4, 40.5, 42.0, 115.9, 116.3, 126.6, 126.8, 128.1, 128.2, 128.4, 129.7, 139.0, 154.2, 160.5, 165.2, 165.5, 171.4 ppm; ms (EI): m/z = 372 [M]+, 339 [M - SH]+, 234 [339 - C₇H₇N]+, 206 [234 - CO]+, 193 [206 - CH]+, 139 [193 - C₃H₄N]+, 112 [F-C₆H₄-CNH]+, 106 [C₇H₈N]+, 91 [C₇H₇]+, 71 [193 - F-C₆H₄-CNH]+.

Anal. Calcd. for: C₁₉H₁₇FN₂OS₂ (372.49): C, 61.27; H, 4.60; N, 7.52. Found: C, 61.30; H, 4.14; N, 7.67.

3-[2-(2-Thienyl)-thiazol-4-yl]-(*RS*)-2-mercaptopropananilide (**11**).

Compound **7a** (2.10 g, 5 mmol) was treated with aniline (0.93 g, 10 mmol) in 50 ml of diethyl ether. Yield: 1.21 g (70%) **11**; mp 158 °C, white crystals; ir (KBr): v 3545-3285, 1650, 1600, 1540 cm⁻¹; ¹H nmr (DMSO-d₆): δ 3.07 (dd, 1H, J = 14.4 Hz, J = 7.5 Hz), 3.14 (d, 1H, J = 9 Hz), 3.37 (dd, 1H, J = 14.4 Hz, J = 7.5 Hz), 3.97 (m, 1H), 7.05 (m, 1H), 7.14 (m, 1H), 7.30 (m, 2H), 7.34 (m, 1H), 7.57 (m, 1H), 7.60 (m, 1H), 7.61 (m, 1H), 7.69 (m, 1H), 10.18 ppm (s, 1H); ¹³C nmr (DMSO-d₆): δ 36.6, 41.3, 115.7, 119.2, 123.4, 127.0, 128.3, 128.5, 128.7, 136.6, 138.9, 153.6, 160.4, 170.3 ppm; ms (EI) m/z = 346 [M]⁺, 313 [M - SH]⁺, 254 [M - C₆H₆N]⁺, 221 [313 - C₆H₆N]⁺, 194 [313 - C₆H₅N, - CO]⁺, 181 [194 - CH]⁺, 128 [181 - C₃H₃N]⁺.

Anal. Calcd. for C₁₆H₁₄N₂OS₃ (346.49): C, 55.46; H, 4.07; N, 8.08. Found: C, 55.50; H, 4.30; N, 8.25.

3-[2-(2-Thienyl)-thiazol-4-yl]-(*RS*)-2-mercaptopropanhydrazide (**12a**).

Compound **7a** (2.10 g, 5 mmol) and hydrazine hydrate (1.00 g, 20 mmol) were reacted in 50 ml of diethyl ether. Yield: 1.30 g (91%) **12a**; mp 126 °C, white crystals; ir (KBr): v 3700-2800, 3310, 1645, 1535 cm⁻¹; ¹H nmr (DMSO-d₆): δ 3.02 (dd, 1H, J = 14.6 Hz, J = 7.7 Hz), 3.27 (dd, 1H, J = 14.4 Hz, J = 7.7 Hz), 3.73 (t; 1H, J = 7.6 Hz), 4.17 (s, br., 2H, NH₂), 7.17 (m, 1H), 7.31 (s, 1H), 7.63 (m, 1H), 7.71 (m, 1H), 9.29 ppm (s, br., 1H, NH); ¹³C nmr (DMSO-d₆): δ 37.0, 39.0, 115.5, 126.9, 128.2, 128.4, 136.6, 153.6, 168.6, 170.8 ppm; ms (EI) m/z = 285 [M]⁺, 254 [M - NHNH₂]⁺, 226 [254 - CO]⁺.

Anal. Calcd. for C₁₀H₁₁N₃OS₃ (285.42): C, 42.08; H, 3.88; N, 14.73. Found: C, 41.83; H, 3.64; H, 14.49.

3-[2-(4-Fluorophenyl)-thiazol-4-yl]-(*RS*)-2-mercaptopropanhy-drazide (**12b**).

Compound **7b** (2.16 g, 5 mmol) and hydrazine hydrate (1.00 g, 20 mmol) were reacted in 50 ml of diethyl ether. Yield: **12b**; mp 134 °C, white crystals; ir (KBr): v = 3465-3295, 1650, 1510, 1230 cm⁻¹; ¹H nmr (DMSO-d₆): δ 3.06 (dd, 1H, J = 14.3 Hz, J = 7.0 Hz), 3.31 (dd, 1H, J = 14.4, J = 7.8 Hz), 3.78 (t, 1H, J = 7.4 Hz), 4.31 (s, br., 2H, NH₂), 7.33 (s, 1H), 7.37 (m, 2H), 7.99 (m, 2H), 9.27 ppm (s, 1H, NH); ¹³C nmr (DMSO-d₆): δ 39.1, 40.9, 116.0, 116.3, 116.4, 128.3, 128.4, 129.8 (d, J = 3 Hz), 154.2, 163.1 (d, J = 248 Hz), 165.2, 170.9 ppm; ms (EI): *m/z* = 298 [M + H]⁺, 266 [M - NHNH₂]⁺, 238 [M - NHNH₂, - CO]⁺, 206 [M - NHNH₂, - CO]⁺, 206 [M - NHNH₂, - CO]⁺.

Anal. Calcd. for C₁₂H₁₂FN₃OS₂ (297.38): C, 48.47; H, 4.07; N, 14.13. Found: C, 48.70; H, 4.08; H, 14.40.

N-Hydroxy 3-[2-(2-thienyl)-thiazol-4-yl]-(*RS*)-2-mercapto-propanamide (13).

Compound **7a** (2.10 g, 5 mmol) was reacted with hydroxylamine (0.50 g, 15 mmol) in 50 ml of diethyl ether. Yield: 1.15 g (80%) **13**; mp 148 °C, white crystals; ir (KBr): v 3600-2700, 3230, 1665, 1535 cm⁻¹; ¹H nmr (DMSO-d₆): δ 3.02-3.38 (m, 2H), 3.68/3.86 (m, 1H), 7.18 (m, 1H), 7.31/7.33 (s, 1H), 7.64 (m, 1H), 7.72 (m, 1H), 9.17 (m, 1H, NH), 10.77 ppm (s. br., 1H, OH); ¹³C nmr (DMSO-d₆): δ 32.3, 49.8, 115.5, 126.9, 128.2, 128.4, 136.4, 153.4, 166.1, 168.3 ppm; ms (EI) m/z = 286 [M]⁺, 253 [M - SH]⁺, 181 [253 - C₂H₂O₂N]⁺.

Anal. Calcd. for: $C_{10}H_{10}N_2O_2S_3$ (286.40): C, 41.94; H, 3.52; N, 9.78: Found: C 42,17; H, 3.58; N, 9.65.

May-Jun 2003

N-(2-Hydroxyethyl) 3-[2-(2-thienyl)-thiazol-4-yl]-(*RS*)-2-mer-captopropanamide (**14**).

Compound **7a** (2.10 g, 5 mmol) and ethanolamine (0.92 g, 15 mmol) were reacted in 50 ml of diethyl ether. Yield: 1.07 g (68%) **14**; mp 94 °C, white crystals; ir (KBr): v 3435-2930, 1640, 1540 cm⁻¹; ¹H nmr (DMSO-d₆): δ 2.99 (dd, 1H, J = 14.4 Hz, J = 7.5 Hz), 3.15 (m, 2H), 3.26 (dd, 1H, J = 14.3 Hz, J = 7.5 Hz), 3.39 (m, 2H), 3.78 (t, 1H, J = 7.5 Hz), 7.18 (m, 1H), 7.31 (s, 1H), 7.64 (m, 1H), 7.72 (m, 1H), 8.18 ppm (t, 1H, NH); ¹³C nmr (DMSO-d₆): δ 37.3, 43.7, 47.8, 62.3, 116.7, 128.0, 129.4, 129.6, 139.0, 155.9, 162.2, 173.5 ppm; ms (EI) m/z = 314 [M]⁺, 281 [M - SH]⁺, 253 [M - NH₂(CH₂)₂OH]⁺, 226 [M - C(O)NH(CH₂)₂OH]⁺, 193 [226 - SH]⁺, 181 [226 - CHS]⁺, 143 [253 - C₅H₄NS]⁺, 110 [C₅H₄NS]⁺, 83 [C₄H₃S]⁺, 71 [181 - C₅H₄NS]⁺, 40 [C₃H₄]⁺.

Anal. Calcd. for C₁₂H₁₄N₂O₂S₃ (314.45): C, 45.84; H, 4.49; N, 8.91. Found: C 45,80; H, 5.24; N, 8.90.

N-{3-[2-(4-Fluorophenyl)-thiazol-4-yl]-(RS)-2-mercaptopropanoyl}-phenylalanine Methylester (**15**).

Compound **7b** (2.16 g, 5 mmol) was reacted with (*S*)-phenylalanine methyl ester (2.69 g, 15 mmol) in of 50 ml diethyl ether. Recrystallization from hexane/CHCl₃. Yield: 1.73 g (78 %) **15**; mp 148 °C, white crystals; ir (KBr): v 3290, 1740, 1645, 1550, 1510 cm⁻¹; ¹H nmr (acetone-d₆): δ 2.43 (d, 1H, J = 9.3 Hz), 3.07 (dd, 1H, J = 13.7 Hz, J = 7.7 Hz), 3.14 (dd, 1H, J = 9.3 Hz, J = 5.8 Hz), 3.19 (dd, 1H, J = 9.3 Hz, J = 5.8 Hz), 3.43 (dd, 1H, J = 14.5 Hz, J = 7.7 Hz), 3.65 (s, 1H), 4.03 (m, 1H), 4.76 (m, 1H), 7.29 (m, 8H), 7.71 (d, 1H, J = 7.8 Hz, NH), 8.05 ppm (m, 2H); ¹³C nmr (acetone-d₆): δ 38.9, 39.0, 42.7, 53.0, 55.3, 117.2, 117.5 (d, J = 26 Hz), 128.2, 129.8, 130.0, 130.9, 131.9, 138.4, 156.1, 162.7, 167.3, 167.7 ppm; ms (EI) m/z = 444 [M]⁺, 411 [M - SH]⁺, 385 [M - CO₂CH₃]⁺, 265 [385 - C₇H₇CHNH₂]⁺, 232 [265 - SH]⁺, 205 [385 - C₇H₇CHNHCO, - SH]⁺, 121 [FC₆H₄CN]⁺.

Anal. Calcd. for C₂₂H₂₁FN₂O₃S₂ (444.55): C, 59.44; H, 4.76; N, 6.30, Found: C, 58.80; H, 5.19; N, 6.87.

 $N'-\{3-[2-(4-Fluorophenyl)-thiazol-4-yl]-2-mercaptopropanoyl\}-N''-(benzyloxycarbonyl)-hydrazine (16).$

Compound **7b** (2.16 g, 5 mmol) was reacted with *N*-benzyloxycarbonyl-hydrazine (1.32 g, 10 mmol) in 50 ml of diethyl ether. Yield: 1.60 g (74 %) **17**; mp 152 °C, white crystals; ir (KBr): 3240-3220, 1710, 1680, 1510, 1230 cm⁻¹; ¹H nmr (acetone-d₆): δ 2.50 (d, 1H, J = 8.8 Hz), 3.13 (dd, 1H, J = 14.6 Hz, J = 7.0 Hz), 3.42 (dd, 1H, J = 14.7 Hz, J = 7.0 Hz), 3.94 (dd, 1H, J = 16.3 Hz, J = 7.2 Hz), 5.11 (s, 2H), 7.20 (s, 1H), 7.27 (d, 2H, J = 8.8 Hz), 7.35 (m, 5H), 8.01 (m, 2H), 8.39 (s, br., 1H, NH), 9.33 ppm (s, 1H, NH); ¹³C nmr (acetone-d₆): δ 39.0, 40.9, 68.0, 117.2, 117.5, 117.6, 129.3, 129.9, 130.0, 131.8, 138.3, 155.8, 157.7, 162.8, 167.3, 173.1 ppm; ms (EI): m/z = 431 [M]⁺, 399 [M - S]⁺, 323 [M - PhCH₃O]⁺, 291 [M - F-C₆H₄, -CHS]⁺, 238 [M - F-C₆H₄-C₄H₄NS]⁺.

Anal. Calcd. for $C_{20}H_{18}FN_3O_3S_2$ (431.51): C, 55.67; H, 4.20; N, 9.74. Found: C, 55.50; H, 3.65; N, 9.77.

 $N'-\{3-[2-(4-Fluorophenyl)-thiazol-4-yl]-2-mercaptopropanoyl\}-N''-[(N-benzyloxycarbonyl)-glycyl Hydrazine (17).$

Compound **7b** (2.16 g, 5 mmol) and *N*-carbobenzoxyglycine hydrazide (1.67 g, 7.5 mmol) were reacted in 50 ml of acetonitrile. Yield: 1.83 g (75%) **17**; mp 221 °C, white crystals; ir (KBr): v 3510-3320, 1700, 1610, 1510, 1455, 1235, 1155 cm⁻¹; ¹H nmr

(DMSO-d₆): δ 3.09 (dd, J = 14.7 Hz, J = 6.9 Hz, 1H), 3.34 (dd, J = 14.7 Hz, J = 7.5 Hz, 1H), 3.71 (d, J = 6.0 Hz, 2H), 3.93 (t, J = 7.2 Hz, 1H), 5.06 (s, 2H), 7.33 (s, 1H), 7.38 (m, 6H), 7.45 (s, 1H), 7.55 (t, J = 6.0 Hz, 1H), 8.00 (m, 2H), 10.12 (s br., 1H, NH), 10.25 ppm (s br., 1H, NH); ¹³C nmr (DMSO-d₆): δ 36.9, 38.4, 41.9, 65.5, 116.1, 116.4, 116.5, 127.7, 128.4, 129.8, 137.0, 153.9, 156.5, 161.5, 164.8, 165.2, 167.8, 170.3 ppm; ms (EI): m/z = 489 [M]⁺, 456 [M - SH]⁺, 379 [456 - C₆H₅], 321 [456 - C₇H₇CO₂]⁺, 264 [321 - COCH₂NH]⁺, 206 [264 - CON₂H₂]⁺, 193 [206 - CH]⁺.

Anal. Calcd. for C₂₂H₂₁FN₄O₄S₂ (488.56): C, 54.09; H, 4.33; N, 11.47. Found: C, 53.80; H, 4.30; N, 11.30.

Acknowledgements.

We are grateful to Volkswagen-Stiftung, Hannover, for financial support.

REFERENCES AND NOTES

[*] Correspondence to: K. Burger. E-mail: burger@organik. chemie.uni-leipzig.de

[1] D. Seebach and H. O. Kalinowsky, *Nachr. Chem. Techn. Lab.*, **24**, 415 (1976).

[2a] D. S. Cohen, C. A. Fink, A. J. Trapani, R. L. Webb, P. A. Zane and R. E. Chatelain, *Cardiovasc Drug. Rev.*, **17**, 16 (1999); [b] J. F. Gaucher, M. Selkti, G. Tiraboschi, T. Prangé, B. P. Roques, A. Thomas and M. C. Fournié-Zaluski, *Biochemistry*, **38**, 12569 (1999); [c] R. Bohacek, S. D. Lombaert, C. McMartin, J. Priestle and M. Grütter, *J. Am. Chem. Soc.*, **118**, 8231 (1996).

[3] A. Kleemann and J. Engel, Pharmazeutische Chemie, Synthesen-Patente-Anwendungen, Georg Thieme, Stuttgart, 1987, p 1104.

[4a] J. A. Robl, Bristol-Meyers Squibb, Patent No. US-5,508,272 (April 16, 1996); *Chem. Abstr.*, **125**, 33695h (1996); (b) D. S. Karanewsky and J. A. Robl, Bristol-Meyers Squibb, Patent No. US-5,552,397 (September 3, 1996); *Chem. Abstr.*, **125**, 328738a (1996).

[5] J. A. Robl, L. M. Simpkins, C.-Q. Sun, N. Murugesun, J. C. Borrish, M. M. Asad, J. E. Bird, T. Schaeffer, N. C. Trippodo, E. W. Petrillo and D. S. Karanewsky, *Bioorg. Med. Chem. Lett.*, **4**, 1789 (1994).

[6] M. J. Fray and D. Ellis, *Tetrahedron*, **54**, 13825 (1998).

[7a] M. Miller, Acc. Chem. Res., 19, 49 (1986); [b] R. Bihofsky, B.
L. Levinson, R. C. Loewi, P. W. Erhardt and M. A. Polokoff, J. Med. Chem., 38, 2119 (1995); [c] Y. Ikeda, S. Gomi, K. Yokose, H. Naganawa, T. Ikeda, M. Manabe, M. Hamada, S. Kondo and H. Umezawa, J. Antibiotic, 38, 1803 (1985).

[8a] J. A. Robl, C.-G. Sun, J. Stevenson, D. E. Ryono and L. M. Simpkins, J. Med. Chem., 40, 1570 (1997); (b) R. L. Tolman, W. J. Greenlee and R. J. Lynch, J. Med. Chem., 35, 2772 (1992).

[9a] M. J. Soth and J. S. Nowick, *Curr. Opin. Chem. Biol.*, **64**, 276 (1999) and references cited therein; [b] J. Aubé (ed), Recent Advances in Peptidomimetics, *Tetrahedron Symposium- in-Print No 83*, **56**, 9725 (2000).

[10] R. D. Duthaler, *Tetrahedron*, **50**, 1539 (1994) and references cited therein.

[11] G. M. Coppola and H. F. Schuster, α -Hydroxy Acids in Enantioselective Syntheses, VCH Weinheim, 1997.

[12] K. Burger and M. Eggersdorfer, *Liebigs Ann. Chem.*, 1547 (1979).

[13a] B. Strijtveen and R. M. Kellog, J. Org. Chem., 51, 3664
(1986); [b] S. E. Kelly and T. G. LaCour, *Tetrahedron Asymm.*, 3, 715
(1992); [c] N. J. Hrib, J. G. Jurcak, D. E. Bregna, K. L. Burgher, H. B. Hartmann, S. Kafka, L. L. Kerman, S. Kongsamut and J. E. Roehr,

J. Med. Chem., 39, 4044 (1996); [d] Japanese Patent, Kokai; Tokyo, Koho, JP 06,122,671; Chem. Abstr., 121, 179098 (1994); [e] US Patent, US 5,229,388; Chem Abstr., 120, 270452 (1994); [f] US Patent, US 4,933,453, Chem. Abstr., 114, 81887 (1991); [g] B.-C. Chen, M. S. Bednarz, O. R. Kocy and J. E. Sundeen, Tetrahedron Asymm., 9, 1641 (1998); [h] H. Schedel, P. J. L. M. Quaedflieg, Q. B. Broxterman, W. Bisson, A. L. L. Duchateau, I. C. H. Maes, R. Herzschuh and K. Burger, Tetrahedron Asymm., 11, 2125 (2000); [i] R. L. Harding and T. D. H. Bugg, Tetrahedron Lett., 41, 2729 (2000); [j] S.-K. Lee, S. Y. Lee and Y. S. Park, Synlett., 1941 (2001); [k] J. Zhu, L. You, S. X. Zhao, B. White, J. G. Chen and P. M. Skonezny, Tetrahedron Lett., 43, 7585 (2002); [l] J. Nam, S.-K. Lee, K. Y. Kim and Y. S. Park, Tetrahedron Lett., 43, 8253 (2002).

[14] For isocysteine see: [a] L. M. Gustavson and A. Srinivasan, *Synth. Commun.*, 21, 265 (1991); [b] N. Fotouhi, A. Lugo, M. Visnick, L. Lusch, R. Walsky, J. W. Coffey and A. C. Hanglow, *J. Biol. Chem.*, 48, 30227 (1994); [c] R. Pires and K. Burger, *Tetrahedron Lett.*, 37, 8159 (1996).

[15] For homoisocysteine see: G. Radics, R. Pires, B. Koksch, S. M. El-Kousy and K. Burger, *Tetrahedron Lett.*, 44, 1059 (2003).

[16] R. Maeda, Chem. Pharm. Bull., 31, 3424 (1983).

[17] Y. Seto, K. Torii, K. Bori, K. Inabata, S. Kuwata and H. Watanabe, *Bull. Soc. Chem. Jpn.*, **47**, 151 (1974).

[18] H. Depaire, J. P. Thomas, A. Brun, A. Olesker and G. Lucacs, *Tetrahedron Lett.*, **18**, 1397 (1977).

[19a] K. Burger, M. Kluge, S. Fehn, B. Koksch, L. Hennig and G. Müller, *Angew. Chem. Int. Ed.*, **38**, 1414 (1999); [b] T. Rühl, L. Hennig, Y. Hatanaka, K. Burger and P. Welzel, *Tetrahedron Lett.*, **41**, 4555 (2000).

[20] K. Burger, E. Windeisen, E. Heistracher, T. Lange and A. A. H. Abdel-Aleem, *Monatsh. Chem.*, **133**, 41 (2002).

[21a] K. Burger, E. Windeisen and R. Pires, *J. Org. Chem.*, **60**, 7641 (1995); [b] R. Pires and K. Burger, *Synthesis*, 1277 (1996).

[22] T. Lange, E. Windeisen, B. Koksch, S. Berger, S. M. El-Kousey and K. Burger, in preparation.

[23] For *Hantzsch* reaction see: K. Burger, M. Gold, H. Neuhauser, M. Rudolph and E. Höβ, *Synthesis*, 1145 (1992).

[24] For *Hantzsch* reaction see: R. H. Wiley, D. C. England and L. C. Behr, *Org. Reactions*, **6**, 367 (1951) and references cited therein.

[25a] A. S. Reddy, M. S. Kumar and G. R. Reddy, *Tetrahedron Lett.*, **41**, 6285 (2000) and lit. cited therein; [b] E. Thouin and

W. D. Lubell, *Tetrahedron Lett.*, **41**, 457 (2000) and lit. cited therein;
 [c] B. Barlaam, P. Koza and J. Berriot, *Tetrahedron*, **55**, 7221 (1999);
 [d]

A. Golebiowski and S. Klopfenstein, Tetrahedron Lett., 39, 3397 (1998).

[26] J. J. Chen and A. F. Spatola, *Tetrahedron Lett.*, **38**, 1511 (1997).

[27] For first examples of the application of 1,3-oxathiolan-5-ones for peptide hybride synthesis see: [a] E. Windeisen, PhD Thesis, 1993, Technical University Munich; [b] G. A. Kraus, J. Bae and P. K. Choudhury, *Synthesis*, 19 (2003).